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Models that deal with the individual level of populations have shown the importance of
stochasticity in ecology, epidemiology and evolution. An increasingly common approach to
studying these models is through stochastic (event-driven) simulation. One striking
disadvantage of this approach is the need for a large number of replicates to determine the
range of expected behaviour. Here, for a class of stochastic models called Markov processes,
we present results that overcome this difficulty and provide valuable insights, but which have
been largely ignored by applied researchers. For these models, the so-called Kolmogorov
forward equation (also called the ensemble or master equation) allows one to simultaneously
consider the probability of each possible state occurring. Irrespective of the complexities and
nonlinearities of population dynamics, this equation is linear and has a natural matrix
formulation that provides many analytical insights into the behaviour of stochastic
populations and allows rapid evaluation of process dynamics. Here, using epidemiological
models as a template, these ensemble equations are explored and results are compared with
traditional stochastic simulations. In addition, we describe further advantages of the matrix
formulation of dynamics, providing simple exact methods for evaluating expected
eradication (extinction) times of diseases, for comparing expected total costs of possible
control programmes and for estimation of disease parameters.
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1. INTRODUCTION

The foundations of ecological and epidemiological
modelling are largely based upon deterministic
equations for dynamics of populations. However, a
growing body of research suggests that demographic
stochastic effects, due to the random nature of
population events, can cause dramatic deviations
from this deterministic ideal (Bartlett 1956; Rand &
Wilson 1991; Fox 1993; Grenfell et al. 1998; Keeling
et al. 2000; Spagnolo et al. 2003; Coulson et al. 2004).
Three notable elements separate stochastic from
deterministic dynamics. The first and most obvious is
the random nature of the dynamics leading to
differences between replicates and temporal variation,
where the deterministic model will often predict an
unvarying equilibrium solution (Taylor 1961; Hanski &
Woiwod 1993; Keeling & Grenfell 1999). The second is
the possibility of stochastic extinction, where, by
chance, individuals may fail to ‘reproduce’ and the
species dies out (Bartlett 1956; Lande 1993; Grenfell
et al. 1995). This is important in most avenues of
population modelling as recovery from extinction can
usually only occur due to interactions with an external
population. Finally, stochasticity induces fluctuations
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away from the deterministic equilibrium (attractor), so
that realizations of the stochastic process often ‘track’
the deterministic transient path. This can often lead to
stochastic resonance where stochasticity causes the
population to oscillate at or near its natural frequency
(Renshaw 1991; Blarer & Doebeli 1999; McKane &
Newman 2005; Alonso et al. 2006; Ross 2006b).

Commonly, modelling of stochastic populations is
performed using integer-based event-driven models
(Gillespie 1976; Renshaw 1991), mimicking the sup-
posed behaviour of the real system. Such methods of
simulation generally allow a range of complex biologi-
cally realistic behaviour to be incorporated in the
underlying model and offer an intuitive modelling
framework to many applied researchers. However,
given a single simulation, it is not clear whether the
simulated dynamics are representative of average
behaviour or merely a chance outlier due to a rare
combination of events. Therefore, large numbers of
replicate simulations are required to establish confi-
dence in results. The same is true in the situation where
our interest is in a rare event, such as occasional
extinctions or unusually large epidemics (although
methods have been developed to improve efficiency,
e.g. importance sampling and the cross-entropy method;
Rubinstein & Kroese 2004). In essence, event-driven
models are in silico experiments and therefore the
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results must be subject to the same statistical treat-
ments as would be employed for any experimental
observation.

A number of approximation methods exist, which
overcome the requirement of a large number of
simulations by providing analytical approximations
for expected behaviour of the population and often
approximations for variability in this behaviour. Two
widely used methods are moment closure techniques
(Keeling et al. 2000; Nåsell 2001, 2002, 2003a,b) and
diffusion approximations (Kurtz 1970, 1971; Pollett
1990; van Kampen 1992; Jacquez & Simon 1993;
Andersson & Britton 2000; Ross 2006a,b). However,
such methods are generally most accurate when the
population size is sufficiently large. Since we are often
interested in stochastic effects when population sizes
are small, and thus stochasticity has a relatively large
impact on dynamics, it would be desirable to have
similar methods that operate effectively when popu-
lation sizes are small. We present such a method for
Markov processes. Markov processes are a class of
stochastic process in which the future state of the
population is determined solely by the current state—
the system has no memory (Norris 1997; Andersson &
Britton 2000); the vast majority of event-driven
stochastic models used in ecology and epidemiology
are Markov processes.

The basic methodology presented here pre-dates
both simulation and analytical approximations; it
allows the complete ensemble of stochastic behaviour
to be predicted precisely by a (very) large set of
deterministic equations (e.g. for susceptible–infectious–
susceptible (SIS) dynamics, NC1 differential equations
are required and for susceptible–infectious–recovered
(SIR) dynamics, (1/2)(NC1)(NC2) differential
equations are required, where N is the number of
individuals). In essence, the deterministic ‘Kolmogorov
forward equation’ (also called the ensemble or master
equation) contains a single equation for the probability
of being in each possible state, with the dynamics
governed by the rates of transition between states
(Norris 1997). Therefore, by solving one set of
differential equations, we can obtain a complete
description of all possible behaviours of the stochastic
system. While these methods have existed for many
years, they appear not to be widely known or used by
many applied practitioners. However, with continuing
advances in computing power, these techniques are
becoming increasingly applicable to real-world pro-
blems. In addition, these ensemble equation methods
can be used to test the validity of analytical approxi-
mation methods (such as diffusion approximations and
moment closure techniques) and provide a richer
understanding of the dynamics of stochastic event-
driven simulations.

The solution of large numbers of differential
equations generated by this method is relatively
straightforward and fast on modern computers, and
has been exploited by a number of researchers
(Dieckmann & Law 1996; Keeling 2000; Keeling et al.
2000; Stollenwerk & Briggs 2000; Alonso & McKane
2002; Stollenwerk & Jansen 2003; Viet &Medley 2006).
However, a careful examination of the Kolmogorov
J. R. Soc. Interface (2008)
forward equation shows that it is linear in terms of the
probabilities of being in each state—the complex
nonlinearities often associated with population
dynamics are simply absorbed into the matrix terms.
This observation allows the equations to be recast in
terms of simpler matrix and vector operations, which
greatly speed computation, and provides more insight
into dynamics. This paper is not intended to provide
detailed computational methodology for handling the
necessary matrix operations (such as finding eigen-
values, solving systems of linear equations or calcu-
lating matrix exponentials), instead readers are
recommended to read one of the various textbooks on
the subject (e.g. Golub & van Loan 1996) or to use one
of the many computational packages that are available
(e.g. MATLAB, LAPACK, R or MATHEMATICA). Instead,
using simple epidemiological examples, we show the
power and advantages of using Kolmogorov’s forward
equations and the associated matrix methods, in
particular when very precise results are required for
relatively small populations. We hope this will
motivate researchers to explore the potential that
these matrix methods have to offer.

Throughout this paper, attention is focused on
dynamics of infectious diseases; this is for two main
reasons. First, the study of infectious diseases has been
at the forefront of research into the behaviour of
stochastic population processes—generally because the
prevalence of infection is often low and therefore
stochastic effects are felt strongly (Bartlett 1956;
Grenfell 1992). Second, for disease dynamics, the
number of events is strictly limited (birth, death,
infection and recovery) and their nature well defined,
whereas for ecological models there is far more
ambiguity (e.g. consider the number of ways in
which density dependence can be modelled). Three
distinct epidemiological models are considered to
exemplify the use of ensemble equations: the endemic
SIS model with infectious imports (i.e. infection
resulting from a source external to the population
being modelled); the endemic SIR model with infec-
tious imports; and the simple SIR model without
births, deaths or imports. Throughout the paper,
deterministic ensemble equation results are compared
with results from the corresponding event-based
stochastic simulations and the additional insights
that come from the matrix formulation are discussed.
Understanding the stochastic behaviour of diseases in
small populations is a vital step towards the control of
infection in subdivided communities with metapopula-
tion-like structure (Grenfell & Harwood 1997). In
particular, the methods outlined in this paper are ideal
for studying infection within families (Hope Simpson
1952; Melegaro et al. 2004; Verver et al. 2004), farms
(Woolhouse et al. 1996; Nodelijk et al. 2000; Stark
et al. 2000; Viet & Medley 2006) and hospitals (Dooley
et al. 1992; Austin et al. 1999; Cooper et al. 1999;
Cooper & Lipsitch 2004). The continual improvement
in computational power means these techniques will be
of increasing importance and applicability in the near
future as it becomes practical to deal with ever larger
population sizes.
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2. THE SIS MODEL

The SIS model is an accurate representation of the
population dynamics for many sexually transmitted
infections (Anderson & May 1992), where following
treatment an infectious individual recovers from the
disease but is once again susceptible to infection. We
take the standard differential equation for the number
of infectious individuals in a deterministic population
(noting that in such formulations, population numbers
are assumed continuous)

dI

dt
Z bSðI C3ÞKgI ; ð2:1Þ

where SZNK1 is the number of susceptibles; N is the
population size (assumed constant); b is the contact
rate; 3 captures the import of infection from an external
source (assumed to equal 0 if the population is isolated);
and g is the rate at which individuals are treated and
return to the susceptible class. In this basic formu-
lation, the natural processes of births and deaths have
been ignored, as these demographic events often occur
at a much slower rate than infection. A more realistic
model of sexually transmitted infections would include
the age, gender, sexual preference and number of
partners of an individual; however, the simple one-
dimensional model (equation (2.1)), in which the only
events are infection and recovery (back to suscep-
tibility), is ideal for illustrating the power of Kolmogor-
ov’s forward equations. In fact, the SIS model has many
similarities with the Levins metapopulation model
(Levins 1969; Alonso & McKane 2002; Ross 2006a,b),
classifying hosts as either empty or occupied with
infection.

For this SIS disease model, there are NC1 different
states that the population can be in, corresponding to
IZ0, 1,., N. We let pn(t) be the probability that there
are n infectious individuals at time t and construct a set
of differential equations for these state probabilities, the
so-called Kolmogorov forward equations

dpn
dt

Z pnK1 bðNKnC1ÞðnK1C3Þ½ �

CpnC1 gðnC1Þ½ �
K pn bðNKnÞðnC3ÞCgn½ �; ð2:2Þ

where IZnZK1 and IZnZNC1 are not feasible
states and therefore pK1 and pNC1 are set to zero.
The first two terms on the right-hand side of equation
(2.2) deal with ways in which an IZn population state
can arise: the first term corresponds to ‘creating’ a new
infectious individual from the IZnK1 state, and the
second term corresponds to recovery from when
IZnC1. The final term deals with ways in which an
IZn population can be lost, either through gaining an
extra case or through recovery of an infectious
individual. While it would be relatively straightforward
to numerically evolve this set of equations, more insight
can be gained by changing to a vector notation.

We set p to be the row vector of the NC1
probabilities. In this vector notation, the Kolmogorov
forward equation becomes

dp

dt
ZpQ; ð2:3Þ
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where the matrix Q is tridiagonal and consists of the
transition rates

QZ
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It is interesting to realize that all of the complex
nonlinear dynamics associated with disease trans-
mission (or other processes) are absorbed into the
terms of the matrix, and therefore the dynamics of p are
purely linear. In general, the eigenvalues
(l1, l2,., lNC1) and left eigenvectors ðl1; l2;.; lNC1Þ
ofQ specify the entire dynamics. (For later use, we also
specify that the right eigenvectors are r1; r2;.; rNC1,
which are associated with the same set of eigenvalues.)
Throughout this paper, we assume that the eigenvalues
are ordered such that 0Zl1RRe(l2)R/RRe(lNC1),
so that the first eigenvector(s) dominates the long-term
dynamics. In general, the sparse nature of Q (here only
3NC1 terms out of (NC1)2 are non-zero) means that
we can exploit a range of powerful numerical techniques
to find dominant eigenvalues (Golub & van Loan 1996;
Trefethen & Bau 1997).

Considering the Kolmogorov forward equation in
general for any Markov process model (given that the
system is finite—as is frequently the case), there exist
two ways in which we can write the full dynamics of the
ensemble for all time, hence providing a single equation
that specifies the exact probabilistic dynamics of the
disease. The simplest formulation extending from the
differential equation (2.3) is

pðtÞZpð0ÞexpðQtÞ; ð2:4Þ

where the exponential of a matrix can be computed
with relative ease (Moler & van Loan 1979; Sidje 1998).
As an alternative representation, we can define the
solution as

pðtÞZ
XNC1

nZ1

qn expðlntÞln; ð2:5Þ

where the coefficients qn are determined by the inner
product of the right eigenvectors of Q with the initial
distribution pð0Þ, ðqnZrn$pð0ÞÞ, and the right eigen-
vectors are normalized so that r i$l jZdijx. (The precise
normalization of left eigenvalues is irrelevant for this
formulation, although throughout we have assumed
that the terms of l1 sum to 1 such that it is a valid
probability distribution. We also note that for equation
(2.5) to hold we have assumed that repeated eigen-
values have equal algebraic and geometric multi-
plicities, which is generally the case.)

For the SIS model, in particular, l1Z0 and all other
eigenvalues are real and negative. Hence, from equation
(2.5), we find that l1 (normalized to sum to 1) is the
final state of the ensemble equation and hence the long-
term distribution of the stochastic SIS model. Figure 1
shows the exact probability distribution given by l 1,
and the error at each point when the distribution is
estimated from a stochastic time series (simulation of
SIS model) of length 100 and 1000 time units. The inset
graph shows how the total (root mean square) error
decreases as the length of the stochastic time series
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Figure 1. Comparison between the ensemble equation solution
and the average of stochastic simulations for the SIS disease
model in a population of 100 individuals. The grey curve is the
equilibrium distribution from the ensemble equation, calcu-
lated as the dominant eigenvector, l 1. As a comparison, the
average distribution is calculated from stochastic simulations
of length 100 and 1000 time units, once transient dynamics
have died away. The thick and thin black lines show the
difference between these stochastically derived distributions
and the ideal from the ensemble equation. The inset graph
gives the root mean square error between the ensemble and
stochastic distributions as the length of the simulation is
varied (gZ1, bZ2=N0R0Z2, 3Z0.01, NZ100).
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increases. As expected from standard statistics, the
error scales inversely with the square root of the length
of the time series (errorf(length)K1/2). So, either very
long or very many stochastic simulations have to be
performed to obtain an accurate prediction of the
distribution of disease prevalence. In contrast, a single
eigenvalue calculation produces the answer to very high
accuracy and extremely quickly. We return to this
question of computational efficiency later.

Other eigenvalues (and the associated eigenvectors)
provide additional information; in particular, the real
part of l2, l3,. (noting again that for the SIS model,
the eigenvalues are all real) informs about the rate of
convergence to the equilibrium distribution. For
the example given in figure 1, l2zK0.0098 while
l3zK0.8725, and the entry of the eigenvector l2
corresponding to the disease-free state IZ0 is signi-
ficantly larger than the other entries. This suggests
that, in general, convergence from any infected state to
the equilibrium distribution is swift, as contributions
from the eigenvectors l3 to lNC1 decay rapidly; however,
escape from disease extinction (governed by parameter
3 and captured by l2) is much slower.

In addition, we note that if 3Z0, the equilibrium
distribution is degenerate as IZ0 is an absorbing
state. In such cases, we may be interested in the long-
term distribution of the process conditioned on non-
absorption; in epidemiological terms, this is the
prevalence distribution, given that the disease has not
died out. This is precisely the information conveyed by
the quasi-stationary distribution, which may once
again be evaluated efficiently using a matrix formu-
lation (Pollett 2006; Ross 2006a). We perform the same
calculations as before, but for the reduced matrix Q0
J. R. Soc. Interface (2008)
derived by removing the first row and first column
(rows and columns corresponding to absorbing states)
from the matrix Q. The first (normalized left)
eigenvector of this matrix, l �1, is the quasi-stationary
distribution of the SIS model without imports of
infection. Once again, the eigenvalues provide us with
additional information; the real part of the first
eigenvalue tells us about the long-term rate of extinc-
tion (decay of the quasi-stationary distribution or
convergence to the absorbing state IZ0), and the
difference between the real parts of the first and second
eigenvalues (the spectral gap) tells us about the rate of
convergence to the quasi-stationary distribution
(Dambrine & Moreau 1981). Furthermore, for the
quasi-stationary distribution to be of practical interest,
the difference between the first and second eigenvalues
must be substantially larger than the magnitude of the
first eigenvalue.

Finally, the matrix formulation also allows exact
evaluation of the likelihood for a sequence of data, and
thus provides a framework for parameter estimation
(Pelupessy et al. 2002; Cooper & Lipsitch 2004; Ross
et al. 2006). Suppose there is a parameter (or set of
parameters) q, we wish to estimate from some given
data. We allow the dependence on q to be made
explicit in our model notation by writing Q(q) and
pðq; tÞ; we also define I i to be the indicator vector that
corresponds to being precisely in state i, and set [$]i to
be the element of a vector corresponding to state i,
while [$]i, j is defined to be the i,jth element of a
matrix. Suppose we now have n observations at times
t1!/!tn, when it is recorded that the process is in
states i1, ., in. The likelihood of observing these
states is

LðqÞZ ½pðq; t1Þ�i1
Yn
kZ2

½I ikK1
expððtkK tkK1ÞQÞ�ik

Z ½pðq; t1Þ�i1
Yn
kZ2

½expððtkK tkK1ÞQÞ�ikK1;ik : ð2:6Þ

This likelihood is the product of the probability of
being in state ik at time tk, given that the system was
in state ikK1 at time tkK1, all multiplied by the
probability of observing the system in state i1 at time
t1. Using the exponential matrix formulation, the
probability of moving from state ikK1 to state ik in
time tkKtkK1 can be explicitly calculated. Any one of
a range of numerical optimization techniques can then
be used to find the value of q, which maximizes the
likelihood (2.6) over the range of parameter space
(Ross et al. 2006). It should be emphasized that this
method of parameter estimation uses the exact
likelihood of observing the given data—assuming the
model is an accurate description of disease
dynamics—and also incorporates dependency between
observations. Although the form of the likelihood (2.6)
is greatly simplified by the assumption of an accurate
record of prevalence, a similar approach is possible
when only partially observed reporting data are
available. We note that if the data are recorded
periodically (such that tkKtkK1 is constant), then the
matrix exponential only needs to be calculated once,
greatly improving computational efficiency.
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It is informative to contrast this estimation method
with MCMC techniques (Gamerman 1997). The
estimation method based on the matrix approach
calculates the exact probability of moving between
two states (say ikK1 and ik); in contrast, MCMC
techniques generally calculate the likelihood by ‘aver-
aging’ over plausible transitions between states
(Gamerman 1997). Therefore, for small population
sizes and limited number of states, this matrix
approach may be faster and more accurate; however,
MCMC techniques can generally deal with higher-
dimensional systems with much larger state spaces.
3. ENDEMIC SIR DISEASES

While the SIS model provides a simple test case for the
ensemble equation, the one-dimensional nature of the
problem means the equilibrium solution to the ensem-
ble equation (2.3) can be found explicitly by balancing
transitions between states (pnb(NKn)nZpnC1g(nC1);
Keeling 2000; Alonso & McKane 2002). In fact, explicit
expressions exist for many quantities of interest for
such one-dimensional birth-and-death processes (Norris
1997), where the only transitions possible are either
increase or decrease the state by 1.

When considering a disease with SIR dynamics, such
that there are (at least) two independent variables, the
problem is more complex and the matrix approach
becomes even more appealing. In the SIR disease
model, when individuals recover, they are assumed to
be immune from further infection; this gives rise to the
standard deterministic model for this type of disease
(Anderson & May 1992)

dS

dt
ZBNKbSðI C3ÞKdS;

dI

dt
Z bSðI C3ÞKgIKdI ;

dR

dt
Z gIKdR;

dN

dt
ZBNKdðSCI CRÞ;

ð3:1Þ

where the birth and death rates are typically assumed
to be equal (BZd ) and again imports from an external
source (governed by the parameter 3) have been
included. Here six distinct events can occur (birth,
death of a susceptible individual, death of an infected
individual, death of a recovered individual, infection
and recovery), which modify the state of the process.
This means, in general, there are six ways in which the
probability density for a particular state can increase
and six ways in which it can decrease:

dpS;I ;N
dt

Z ½bðSC1ÞðIK1C3Þ�pSC1;IK1;N

C ½gðI C1Þ�pS;IC1;N C ½BðNK1Þ�pSK1;I ;NK1

C ½dðSC1Þ�pSC1;I ;NC1C ½dðI C1Þ�pS;IC1;NC1

C ½dðNC1KSKI Þ�pS;I ;NC1

K½bSðI C3ÞCgI CBNCdSCdI

CdðN C1KSKI Þ�pS;I ;N ; ð3:2Þ
J. R. Soc. Interface (2008)
where pS,I,N is the probability of having S susceptible
individuals, I infectious individuals and a total popu-
lation of size N.

Unfortunately, due to the way births are modelled, a
strict upper limit cannot be placed on the population
size for the stochastic model, which is necessary to
formulate a finite matrix expression. Hence, we require
a mechanism of bounding the population. One
approach to this, which should provide the most
accurate approximation to the dynamics of equation
(3.2), is to truncate the process at some large
population size N. The influence of truncating the
process at various population sizes may then be
examined numerically, and for some models analyti-
cally (Cairns & Pollett 2005). In practice, one would
usually choose the largest population size N for which
computations remain feasible. An alternative way to
bound the population size is to fix the population size N
as a constant, such that the death of a susceptible,
infectious or recovered individual is immediately
compensated by the birth of a susceptible. This
assumption has three additional advantages. First, it
reduces the number of independent variables to two
(just S and I ). Second, it circumvents the necessity to
choose between density- and frequency-dependent
transmission (Begon et al. 2002). Finally, a constant
population size is reasonable for many applied pro-
blems, such as modelling the transmission of infection
upon farms or within hospital wards, where there is
generally little variation in the number of individuals in
the population (Pelupessy et al. 2002; Cooper &
Lipsitch 2004; Viet & Medley 2006). It should be
noted that while assuming a constant population size
does not change the ODEs (3.1) (if, as is typical, we
assume BZd ), however, it does change the Kolmo-
gorov forward equations

dpS;I
dt

Z½bðSC1ÞðIK1C3Þ�pSC1;IK1C½gðIC1Þ�pS;IC1

C½dðNKðSK1ÞKI Þ�pSK1;IC½dðIC1Þ�pSK1;IC1

K½bSðIC3ÞCgICdðNKSKI ÞCdI �pS;I ;
ð3:3Þ

where pS,I is the probability of having S susceptible
individuals and I infective individuals. This highlights an
additional use of the Kolmogorov forward equations: the
Kolmogorov forward equations uniquely specify the full
stochastic dynamics, whereas there are multiple inter-
pretations of the ordinary differential equations (Keeling
2000). For this model, there are CZ1=2ðNC1ÞðNC2Þ
possible disease states (0%S%N, 0%1%NKS ), and so
C different pS,I variables. To formulate a matrix
expression, we need to find a method of mapping the
two-dimensional pS,I into a one-dimensional vector, p.
An efficient means of achieving this is to set the
probability pS,I as the ðNSK1=2ðSðSK3ÞCIC1ÞÞth
element of the vector.

Now, as before, we can compute the distribution of
states as pðtÞZpð0ÞexpðQtÞ, where the matrix Q is
constructed from the transition rates between states;
again Q is sparse (a very small proportion of non-zero
terms). If we are only interested in long-term
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Figure 2. Dynamics of the full stochastic SIR equation with
very rapid ‘births’ and ‘deaths’, which could be compared
with movements on and off farms or hospital wards. (a) The
solid lines show the 10, 50, 90, 95, 99 and 99.5% level curves
for the distribution from the first eigenvalue of the ensemble
approach. The dots show the number of susceptible and
infectious individuals from a long stochastic simulation
(10 000 points each separated by 100 events); the most
frequently visited points lead to a darker coloration. The
diagonal line corresponds to SCIZN and is therefore the
limit of possible values. (b) The extinction rate from the equili-
brium distribution for a range of population sizes. The inset
graph shows the nonlinear increase in the mean number of
susceptibles and infecteds when the population size is small;
solid line, infecteds; dashed line, susceptibles (dZ0.5, gZ1,
bZ5=N0R0Z3:333, 3Z0.1; in (a), NZ100).
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behaviour, considering the eigenvalues again provides
an efficient method of calculating the equilibrium
distribution. For this SIR model, the first eigenvalue,
l1, is zero while all the others have negative real parts,
and thus there is again a unique equilibrium distri-
bution. Hence, from equation (2.5),

p� Z lim
t/N

pðtÞZpðNÞZ l 1;

so the entire long-term behaviour of the full stochastic
system can be found by simply computing the dominant
(left) eigenvector, which can be done relatively
efficiently (Pollett & Stewart 1994; Golub & van Loan
1996). Figure 2a compares the distribution from the
first eigenvector (contours) with the results of a long
stochastic simulation (dots). As expected, there is good
J. R. Soc. Interface (2008)
agreement between the two methods, although the
Kolmogorov forward equation approach provides far
more detail, allowing evaluation of the exact (to
numerical precision) distribution of states—which can
be a highly efficient way of calculating extremes of
behaviour such as the 99 or 99.5% contours.

Looking at the other eigenvalues and eigenvectors
again provides a deeper understanding of the dynamics.
For the parameters used in figure 2a, once again, the
second eigenvalue and eigenvector describe the slow
escape from the disease-free state (SZN, IZ0), with
l2zK0.3468. Thus, if the initial distribution begins at
the disease-free state, it will escape relatively slowly at
rate exp(K0.3468t). This is in direct contrast to the
strong instability of the disease-free state in the
standard ODE model (equation (3.1)) for which I(t)
grows at approximately the rate exp(2.333t) for I(0)
small; this difference is because in the stochastic model,
an import is required for the infection to escape zero
and there is the possibility of stochastic extinctions,
both of these are captured by the Kolmogorov forward
equation. The third and fourth eigenvalues are a
complex conjugate pair (approx. K0.7607G0.9576i )
and correspond to the dominant oscillations around the
equilibrium distribution. These oscillations have a
slightly longer period and a slower decay than predicted
by the standard ODE model (Anderson & May 1992,
where the eigenvalues are approx. K0.8401G1.0287i)
due to the effects of stochasticity and nonlinearities
around the fixed point.

Finally, the equilibrium solution can also tell us
about the long-term rates of temporary extinction and
subsequent reinfection of the population. As we are at
equilibrium, these two rates must be equal and can be
calculated as either the rate at which infection is lost
from p�S;1 or the rate that reinfection occurs from p�S;0

extinction rateZ
XNK1

SZ0

p�S;1ðgCdÞ

Z re-infection rateZ
XN
SZ0

p�S;0ðbS3Þ:

Figure 2b shows the extinction rates from the equili-
brium distribution, and average numbers of susceptible
and infectious individuals, for a range of population
sizes and with bZ5/N. As expected, the extinction rate
decreases exponentially with increasing population size
(extinction ratez11.13 exp(K0.0789N )), and for
population sizes above 100 the mean number of
susceptibles and infecteds increases linearly.
4. THE SIMPLE SIR EPIDEMIC

As a further example of the power of ensemble
equations, we consider the simple SIR model, without
births, deaths or imports of infection

dS

dt
ZKbSI ;

dI

dt
Z bSIKgI ;

dR

dt
Z gI :

ð4:1Þ
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The Kolmogorov forward equations are defined as in
equation (3.3), but with dZ3Z0. For this model, we
observe a single epidemic that eventually dies out as the
level of susceptibles becomes too low to support the
infection and cannot be replenished. While generally
considering the simplest form of the deterministic SIR
model, in this stochastic setting the dynamics are more
complex as there are multiple equilibrium (absorbing)
distributions. For a population of size N, there are NC1
equilibria corresponding to IZ0, SZ0,., N. Faced
with this inevitable extinction, there are two applied
questions that can be addressed using the ensemble
model: what is the expected time to extinction, and how
many individuals escape infection, and the influence of
the initial conditions on both of these quantities is of
applied interest. These questions are once again readily
calculated using a matrix formulation.

The expected time to extinction, ½t�i, when starting
in state i, is evaluated as the solution to

Q0tZK1;

where 1 is a vector of 1s, and Q0 is again the matrix Q
with the rows and columns corresponding to the (NC1)
absorbing states removed (Mangel & Tier 1994; Norris
1997). Additionally, if costs are involved (such as
treatment and isolation costs), we can replace 1 by a
vector f , where the entry ½f �j is the cost per unit time
associated with a population in state j. The solution ½t�i
now corresponds to the expected total cost over the
lifetime of the disease starting in state i (Norris 1997;
Pollett & Stefanov 2002; Pollett 2003). This formu-
lation highlights that the effect of initial conditions may
be rapidly evaluated once t is calculated.

In the deterministic model, the final size of the
epidemic, RN, is defined as the proportion of a totally
susceptible population that become infected (and
eventually recover) following the introduction of a
small amount of infection (Kermack & McKendrick
1927). In this context, the final size is determined by the
relationship

RNZ 1KexpðKR0RNÞ:

We now wish to consider how this theoretical quantity
for a large deterministic population compares with
results for small stochastic populations. Using the
matrix formulation, the average final size of the
epidemic ( �RðNÞ) can be calculated from the number
of susceptibles ‘surviving’ in the final probability
distribution

�RðNÞZ ½Sð0ÞK �SðNÞ�=N

Z Sð0ÞK
XN
SZ0

SpS;0ðNÞ
 !

=N :

We now use equation (2.5), but note that there are NC1
zero eigenvalues and that eigenvectors associated with
zero eigenvalues span the null space of the matrix. The
null-space calculation provides a computationally
efficient means of finding the eigenvectors and hence
calculating the final state of the system. (For simpli-
city, we can set the first NC1 left eigenvectors to be
lSC1ZI ðS;0Þ (where I ðS;0Þ is a vector of length equal to
J. R. Soc. Interface (2008)
the size of the state space and having a 1 in the entry
corresponding to the state (S, 0) and zeros elsewhere),
the right eigenvectors can then be found such that they
span the null space of Q and satisfy r i$ljZdij .) From
equation (2.5), the long-term distribution is given by

pðNÞZ
XNC1

iZ1

ðr i$pð0ÞÞli;

allowing us to compute �RðNÞ. Hence, the influence of
initial distributions on the size of the epidemic may
again be computed very quickly. (We note that
alternative methods exist for evaluating this quantity,
as described for instance by Bailey (1953), Daley &
Gani (1999) and Diekmann & Heesterbeek (2000).)

Figure 3a shows the long-term distribution ps,0(N)
in a population of 50 individuals, starting from S(0)Z
40 and I(0)Z5. As expected, the model predicts a range
of epidemic sizes, from failure of the initial cases to
generate any secondary infections to epidemics infect-
ing the entire population. Once the left and right
eigenvectors have been found corresponding to the null
space of the matrix, extending the calculation to
include the complete range of possible initial conditions
is computationally efficient (figure 3b). Figure 3c shows
the corresponding average times to extinction. Several
facets are clear from these results: the average time to
extinction increases with both the initial number of
susceptibles and the number of infecteds; in contrast,
the number of individuals escaping infection decreases
with the initial number infected but increases with the
number that are initially susceptible.

Finally, in figure 3d, we consider how numerical
calculation of final size (proportion of a totally
susceptible population that becomes infected) in a
stochastic population (starting with S(0)ZNK1 and
I(0)Z1) compares with theoretical predictions of
Kermack & McKendrick (1927). The theoretical value
of RN has to be modified by a factor 1K1/R0, which
accounts for failure of the initial infection to cause a
major epidemic (Bartlett 1956). Although the theoreti-
cal value may be appropriate in the limit of large
population sizes, understanding the deviation from this
ideal for small populations is highly informative. Two
conflicting elements contribute to the pattern. First, for
small population sizes, the initial case is a significant
proportion of the population size, hence the true final
size is greater than the theoretical prediction. However,
for larger population sizes, the theoretical prediction is
an overestimate primarily due to underestimating the
extinction risk. While these conclusions are intuitive,
and could be determined by repeated simulation, the
results from the ensemble equations provide an
extremely accurate description of the behaviour and
are computationally efficient to generate.
5. COMPUTATIONAL EFFICIENCY

Throughout this paper, we have alluded to the
computational efficiency of using the Kolmogorov
forward equation when dealing with Markov models.
We now wish to make these assertions more definite by
providing some examples of the types of computational
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Figure 3. Results for the SIR ensemble equationwithout births or deaths. (a) For a population size ofNZ50, and startingwith S(0)Z
40, I(0)Z5, shown are the distribution of the number of susceptible individuals remaining once the infection has died out given by
pðNÞ. (b) The extension of this result to the entire range of initial conditions and, of necessity, the extraction of the average number of
susceptible individuals from the final distribution (the initial conditions used in (a) are shown by a dot). (c) The average time to
extinction, again for the entire range of possible initial conditions. Note that for (b) and (c), only a triangular set of initial conditions
are feasible as SC1 must be less than or equal to N. (d ) The examination of the so-called ‘final size’ of an epidemic; starting with
S(0)ZNK1, I(0)Z1, we show the average proportion of the population infected during the epidemic, 1KS(N)/N. We compare the
numerical results with simple theory (RN(R0K1)/R0), where RN is the expected proportion infected in a deterministic model and
1K1/R0 is the probability that a stochastic invasion caused a major epidemic (throughout gZ1, bZ2=N0R0Z2).

Table 1. Times required to calculate various quantities from
the Kolmogorov forward equation for the SIS and SIRmodels.
(Only the calculations that complete within a reasonable time
frame are shown. It should be noted that for the SIR model,
the number of states increases like 1/2N 2. Calculations are
performed on a 2.4 GHz PC using MATLAB.)

calculation of

time to perform calculation
with population size (N )

100 100 10 000

Q matrix (SIS) 0.0005 s 0.0024 s 0.024 s
dominant eigenvalue and

eigenvector (SIS)
0.0295 s 0.0372 s 0.282 s

four dominant eigenvalues
and eigenvectors (SIS)

0.0232 s 0.0754 s 0.728 s

exp (0.1Q) (SIS) 0.0743 s 180 s 6.4 h
exp (10Q) (SIS) 0.0622 s 5.3 min —
Q matrix (full SIR) 0.390 s 4.742 s —
dominant eigenvalue and

eigenvector (full SIR)
0.2785 s 67.1 s —

four dominant eigenvalues
and eigenvectors (full
SIR)

0.5359 s 107 s —

Q matrix (simple SIR) 0.023 s 2.99 s —
null space (simple SIR) 0.376 s 2.45 h —

178 Methods for stochastic disease dynamics M. J. Keeling and J. V. Ross
demands required by the various problems discussed in
this paper (table 1). It is clear that some calculations,
such as computing the transition matrix Q or calcu-
lating the first few dominate eigenvalues and eigenvec-
tors, are relatively fast—and therefore applications
which use this information may have substantial
advantages over event-driven stochastic simulations.
However, other calculations, such as finding exponen-
tials and null spaces, are associated with significant
computational overheads and therefore repeated event-
driven simulations may be preferable.

To provide a relative comparison with the times in
table 1, we shall consider what can be achieved with a
similarly parametrized event-driven stochastic model in
one second. Both SIS- and SIR-type models can perform
approximately 2.7 million events per second using
Gillespie’s direct algorithm (Gillespie 1976)—the com-
parable speed of both SIS and SIR models is because the
rate-determining step is the calculation of two random
numbers per event. For the SIS model, illustrated in
figure 1, we find that in the time it takes to calculate the
matrix, dominant eigenvalue and associated eigenvector,
the equilibrium distribution can be calculated with an
error of approximately 1% for both NZ100 and 1000.
Hence, for this problem, the Kolmogorov forward
J. R. Soc. Interface (2008)
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equations have substantial benefits. However, for the
simple SIR model without births or deaths (figure 3),
Gillespie’s direct algorithm allows the simulation of
approximately 170 complete epidemics per second for a
population size of NZ10 000, which is just sufficient to
calculate the mean final epidemic size to within 1%. In
contrast, the null-space calculation for NZ10 000 is
computationally infeasible, so multiple stochastic
simulations are the only suitable methodology.

Given the time scales and computational overheads
involved with the matrix formulation of SIS and SIR
models relative to event-driven simulations, we can
come to the following general conclusions. Problems
that involve large populations (and many possible
states) are best tackled using event-driven stochastic
simulations; this is because although simulation time
generally increases proportional to the population size,
the computational time associated with the matrix
operations increases proportional to the number of
states (or even faster). The advantages of the matrix-
based approach are most evident when answers (or
distributions) are required to high precision and
multiple sets of initial conditions need to be considered.
For example, the calculation of the null space for the
simple SIR model is a computationally intensive
process, but once found the effect of different initial
conditions can be calculated using a single matrix–
vector multiplication; in contrast, with event-driven
stochastic simulations, each set of initial conditions
requires a new set of replicate simulations. As an
illustrative example, consider a set of stochastic (event-
driven) epidemics for the entire range of possible initial
conditions, which take the same amount of time as the
associated null-space-based calculation in table 1; for
NZ100, the stochastic simulations could calculate the
mean final epidemic size to an accuracy of just 10%
while for NZ1000 the accuracy increases to approxi-
mately 2.5%. Therefore, even though calculating null
spaces is computationally demanding, it can be an
efficient approach if multiple initial conditions need to
be considered.

There are still many situations where it is currently
infeasible to consider the Kolmogorov equations. For a
population of N individuals, where each individual
can be in one of n states, the number of possible states
of the process grows like 1=n!ðNnÞ. As such, a disease
with SIR dynamics has CZ1=2ððNC1ÞðNC2ÞÞ
states ðNZ1000CZ5151Þ, whereas if the dynamics
are assumed to be SEIR (susceptible–exposed–infectious–
recovered ), the number of states increases to
CZ1/6((NC1)(NC2)(NC3)) (NZ1000NZ176851).
Hence, although increasing computational power will
allow us to deal with Kolmogorov’s forward equations
for ever larger population sizes, increasing the biologi-
cal realism, and thus the number of states, can readily
overtake any gains in processing speed.
6. DISCUSSION

Understanding the dynamics of stochastic populations,
and how they deviate from the deterministic ideal, is
being viewed with increasing importance by ecologists
and epidemiologists. In particular, the stochastic
J. R. Soc. Interface (2008)
behaviour of diseases in small (well-mixed) populations
is vital for a better understanding of control. For such
situations, where the number of possible states is not
prohibitively large, ensemble equations provide a very
powerful and efficient alternative to replicate stochastic
simulations.

In this paper, it has been shown that the natural
matrix formulation (due to the linear nature of the
ensemble equation) allows us to specify the dynamics in
a concise form, which in turn allows a wealth of
sophisticated computational approaches to be used.
Four considerable benefits are gained from this
approach. First, only a single calculation needs to be
performed to describe the dynamics of an infinite
ensemble of stochastic realizations. Second, and as a
corollary to the first point, the results of the ensemble
equations are exact—so the probability of rare events
(which could have a large impact) can be calculated
precisely. Third, once the initial calculation is per-
formed, considering a range of initial conditions is
generally highly efficient. Finally, the fact that the
ensemble equations are deterministic means that a wide
variety of tools from dynamical systems can be used; for
example, it is possible to assess the rate of convergence
to an equilibrium distribution.

The use of the Kolmogorov forward equation clearly
has many benefits over more commonly used event-
driven stochastic simulations; although we will never be
able to completely replace the need for simulation in
applied modelling. At the moment, Kolmogorov’s
forward equations are best used on small populations
(N!1000) with SIR- or SIS-type dynamics, which
complements the need for precise study of small
populations where the effects of stochasticity are the
greatest. We therefore expect this approach to have
maximum benefit when examining the spread of
infection within families, farms and hospitals and
when needing to obtain precise estimates of rare events.
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